C-Quest: The Climate Research Challenge for Agriculture

Charles W. Rice
University Distinguished Professor
Mary L. Vanier University Professorship
Department of Agronomy, Kansas State University

Chair, NASEM Board on Agriculture and Natural Resources
What is climate change?

- Change in precipitation
- Change in temperature
- Change in seasonality
- Frequency of extreme events
- Increase variability
Low Pathway (RCP 2.6)

High Pathway (RCP 8.5)

Degrees F

1 3 5 7 9 11 13 15

Generally, Wet Get Wetter and Dry Get Drier

Low Pathway (RCP 2.6)

High Pathway (RCP 8.5)

Percent Change

-30 -20 -10 0 10 20 30
Future Climates: Episodes of Extreme Events

Higher Mean Temperature

More Episodes of High Temperatures

Higher Mean Temperature and More Episodes of High Temperatures
Pattern of Projected Changes in Soil Moisture

Mid-Century Changes

End-of-Century Changes

Higher Emissions Scenario (A2)

Lower Emissions Scenario (B1)

Percent

-15 -10 -5 -1 1 5 10 15
Lal et al., 2012. J. Soil Water Conserv. 67
Heat and drought stress are major environmental concerns.

Year 2011: Kansas – $ 1.8 billion (insurance claims); Texas (about $ 5 billion). Most yield losses were related to drought and high temperatures.

Economic Impact of Drought and Heat Stress

<table>
<thead>
<tr>
<th>Crops</th>
<th>Crop Grain Yield Loss (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>1. Wheat</td>
<td>$ 286</td>
</tr>
<tr>
<td>2. Sorghum</td>
<td>$ 214</td>
</tr>
<tr>
<td>3. Corn</td>
<td>$ 966</td>
</tr>
<tr>
<td>4. Soybean</td>
<td>$ 310</td>
</tr>
</tbody>
</table>

Research Needed
Research

• Soil Health
 – Provides resilience
 – Soil biology
Research to adapt to climate variability

• Erosion prevention and protection from extreme weather events, which may be more damaging in the future.

• Increase soil C sequestration to improve soil health.

• More diverse cropping systems to adapt to variable climates and new pest and disease pressures.

• Improve the synchronization of planting and harvesting operations with shifts in the hydrologic cycle (rainy season

Delgado et al, 2011; J. Soil Water Consn, Vol 66 - Best paper award
No-till Cropping Systems

- Restores soil carbon
- Conserves moisture
- Planting flexibility
- Reduces erosion
- Controls weed
- Improves soil fertility
- Saves fuel
- Saves labor
- Lowers machinery costs
Intense and diverse cropping systems

- Soybean
- Oats
- Wheat
- Corn
Managing the Landscape

Riparian

Trees

Grass Buffers
Research

- Plant and animal breeding
- Crop selection
Research to adapt to climate variability

- Develop crop varieties that are:
 - Greater tolerance to drought
 - Greater resistant to heat stress
 - Higher N-use and other nutrient efficiencies
 - Greater synergies with soil microbes
 - Perennials

- Develop livestock breeds for:
 - Greater efficiency and lower emissions
 - Heat tolerance

Delgado et al, 2011; J. Soil Water Consn, Vol
Research

- Sensors
 - Fertilizer management
 - Water management
 - Pest management
- Precision Agriculture
Research to adapt to climate variability

- Manage soil and crops to increase water-use efficiencies.

- Irrigation infrastructure to reduce water losses and increase irrigation efficiencies.

- Increase N-use and other nutrient efficiencies for cropping systems.

- Apply the concepts of precision/target conservation to increase conservation effectiveness across spatial and temporal variability.
Research

- Models and weather forecasting
- Risk Management
Massively exciting, transformational science

A complementary bottom-up approach: Information from commercial fields - Taking advantage of modern information technologies !!!

"The most magical aspect of big data is Smart Data: the application of statistical analytics and machine learning to data sets to find interesting connections and signals in all the noise."

Philip Brittan. http://tmsnrt.rs/1EmFXTT
Temperatura máxima (C) Precipitación (mm)

<table>
<thead>
<tr>
<th>Historical average</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>76</td>
<td>116</td>
</tr>
</tbody>
</table>

Maximum Temperature (°C) Precipitation (mm)

Historical average

Forecast
Fedearroz 733: 6.860 kg/ha
Fedearroz 60: 4.600 kg/ha
Challenges

- Collaborate across sciences and with other disciplines to achieve societal challenges and sustainability
 - Agricultural scientists should look for ways to enhance collaboration and integration with
 - Ecology
 - Geostatistics
 - Earth and Planetary Sciences
 - Hydrology
 - Computer Science
 - GIS and Remote Sensing
 - Mathematics and Statistics

- Collaborations with social scientists and economists will help better understand and predict land use changes and human behavior.
Research Summary

- Soil health
 - Provides resilience
 - Soil biology and its interaction with roots
- Plant and animal breeding
- Crop selection
- Sensors
 - Fertilizer management
 - Water management
 - Pest management
- Precision agriculture
- Models and weather forecasting
- Risk management
Summary

• Use all the tools in the tool box
 – Traditional
 • Soil health, soil and crop management
 – Modern Technologies
 • Genetic modifications, remote sensing, precision ag, soil biology

• Provide technical support
 – Extension Land Grant Universities
 – Government
 – Private

• Investments in research and education