International Consensus on Environmental Risk Assessment of GE Crops: Contributions from the Organization for Economic Cooperation and Development

South Asia Conference on Current Approaches to Environmental Risk Assessment of Genetically Engineered Crops, May 16-18, 2011 New Delhi, India

OECD Working Group on the Harmonization of Regulatory Oversight in Biotechnology
Dr. Sally McCammon, Chair
33 Member Countries of OECD

- Australia
- Austria
- Belgium
- Canada
- Chile
- Czech Republic
- Denmark
- European Commission
- Finland
- France
- Germany
- Greece
- Hungary
- Iceland
- Israel
- Italy
- Japan
- Korea
- Luxembourg
- Mexico
- Netherlands
- New Zealand
- Norway
- Poland
- Portugal
- Slovak Republic
- Slovenia
- Spain
- Sweden
- Switzerland
- Turkey
- United Kingdom
- United States
OECD Regulatory Harmonization in Biotechnology

- Working Group for the Harmonization of Regulatory Oversight in Biotechnology
 - Environmental

- Task Force for the Safety of Novel Food and Feed
 - Food
Working Group Observers

• **Formal**
 – Argentina
 – Russia
 – OECD Business and Industry Advisory Committee

• **Ad hoc**
 – Brazil
 – Cameroon
 – China
 – Egypt
 – India
 – Philippines
 – South Africa
Other Working Group Observers

- CBD Secretariat
- CERA
- FAO
- ICGEB
- UNEP
- UNIDO
- IFPRI (International Food Policy Research Institute)
WG Harmonization

• Differences between countries
 – New Laws or not
 – Regulation endpoints based upon adverse effects or defined risks
 – Combined or separate environmental or food/feed safety reviews
 – Triggers- novelty, GE/GMO, combination
 – Adverse effects
 – Number of ministries involved in regulation (and in developing positions for international discussions)
Harmonization and the WG

- To ensure that the information used in environmental risk/safety assessment of transgenic organisms, as well as the methods used to collect such information, is as similar as possible among countries.
 - Develop a common way of thinking for regulators and safety assessors
 - Provide technical documents to support risk assessment
 - Capacity building
 - Link with non-member countries
Working Group

- Technical documents that support risk assessment for environmental release
- Rationales for importance to risk/safety assessment
- Mutual recognition of or acceptance of data, assessments
Criteria

- Science Basis for approaches to environmental assessment
- Leverage collective expertise in environmental assessment of biotechnology products
- Economies of scale
- Credibility of Working Group
WG Harmonization

• Similarities between countries
 – Risk assessment paradigm
 • Biology + trait + environment X interaction
 • Use of familiarity
 • Comparative
 • Step-by-step, case-by-case
Assessment Paradigms

Established in OECD - 1993

• Concept of Familiarity (environmental safety)-Basis of assessment
 • Biology X Trait X Environment + Interaction
 • Hazard identification and safety assessment

• Substantial Equivalence (food safety)-Basis of assessment
Concept of ERA Developed within OECD: History

 - Industrial, agricultural and environmental applications
 - Confined Field tests
 - Large-scale field tests
OECD Blue Book (1986)

- Agriculture
- Risk assessment includes evaluating
 - Donor and recipient organisms
 - Techniques for developing organism
 - Properties of resulting organism
- General considerations included
 - Survival and multiplication
 - Interactions with other species
 - Effects on environment
OECD Blue Book (1986)

• Stepwise
 Laboratory > Greenhouse > Small-scale field trial > Large-scale field trial > (unconfined release)

• Case-by-Case
 – Individual review of proposal against assessment criteria relevant to the particular proposal;
 – not intended to imply that every case will require review since classes of proposals may be excluded.
1993 Scale-up: Familiarity

- **Knowledge and experience**
 - Unmodified plant > basis for comparative risk assessment

- **Hazard identification and risk assessment**
 - Safety issues
 - Safety concerns > product specific
 - Assessing potential adverse effects

- **Applying risk management including**
 - When standard cultural practices are adequate
 - When additional management practices are needed
 - When increases in scale not appropriate

- **More information needed**
1993 – Scale-up

• Background in plant breeding and performance trials for the development of new plant varieties.

• Safety issues that could give rise to a concern
 – Gene transfer,
 – Weediness,
 – Trait effects,
 – Genetic and phenotypic variability,
 – Biological vector effects and genetic material from pathogens,
 – Worker/human safety
Familiarity (1993)

• Information available before assessment
 – The crop plant
 – Agricultural and surrounding environment
 – Specific traits introduced
 – Previous basic research in greenhouse and small-scale field trials
 – Scale-up of plant lines with traits developed by traditional techniques
 – Scale-up of similar plant lines (transgenic)
 – Presence of related sexually compatible plants in the environment
 – Interactions between the crop/trait/environment
Working Group
Organisms in the Environment

Plants
Micro-organisms
Animals
I. ‘Consensus Documents’ – biology and trait
II. Information Dissemination and Outreach
III. Facilitating Harmonization: Emerging Issues
OECD Working Group

• Funding-Extramural
• Projects developed by Member Countries
 – Proposal > Draft operational plan > steering group > document

• Bureau (Board of Directors)
 – Australia, Japan, Finland, Mexico, Netherlands, United States + the Secretariat (Canada)
Environmental Risk Assessment
Plants
I. Consensus Documents—Biology of Crop Plants (27)

- *Zea mays* (Maize)
- *Beta vulgaris* L. (Sugar Beet)
- *Glycine max* (L.) Merr. (Soybean)
- *Oryza sativa* (Rice)
- *Triticum aestivum* (Bread Wheat)
- *Solanum tuberosum* subsp. *tuberosum* (Potato)
- *Brassica* spp. (5)(2011)
 - *Brassica napus* L. (Oilseed rape)
- Bananas and Plantains (2009)
Plant Biology Consensus Documents

- *Carica papaya* (Papaya)
- *Capsicum annuum* complex
- *Helianthus annus* (sunflower)
- Cotton
- Trees (13)
 - Forest
 - Pulp
 - Fruit
Plant Biology Consensus
Documents in the Pipeline

• Cucurbits (Mexico)
• Tomato (Spain and Mexico)
• Sugarcane (Australia)
• Eucalyptus (Australia)
• Sorghum (South Africa and the United States)
• Compositional Considerations: Key Food and Feed Nutrients, Anti-Nutrients and Toxicants

• Examples
 – Bread Wheat (*Triticum aestivum*)
 – Maize (*Zea Mays*)
 – Potatoes
 – Sugar Beet
 – Soybean
 – Low Erucic Acid Rapeseed (Canola)
 – Papaya
Guidance for Development of Biology Documents

• Introduction to Biosafety Consensus Documents (2005)
• Points to Consider (2006)
• Guidance for Preparation (2008)
 – Lead country
 – Lead authors
 – Working Group review
 – Secretariat
Points-to-Consider

• Points to Consider for Consensus Documents on the Biology of Cultivated Plants
 – Guide to revising documents
 – Guide to developing new documents

• Descriptions of sections and sub-sections e.g.
 – Taxonomy
 – Related and sexually compatible species
 – Cultural practices

• Rationales
 – Why relevant
 – Not how used in risk/safety assessment

• Examples – OECD consensus documents
Consensus Documents-Traits

- Virus Resistance (coat protein)
- Glyphosate Herbicide Tolerance
- Phosphinothricin Herbicide Tolerance
- Herbicide Metabolism and the Residues in Glufosinate-Ammonium (Phosphinothricin)-Tolerant Transgenic Plants
- *Bacillus thuringiensis* - Trait
Use of Consensus Documents

• By applicants for submissions
• By regulators for assessments
• By public for understanding
II. Outreach Activities

• Biotrack Online www.OECD.org/biotrack
 – OECD Publications-finalized ‘consensus documents’
 – Links to Member Country Websites
 – Product database

• Unique Identifiers – plants (2003), stacked genes (2007)

• International Symposia for Biosafety of GMOs – 3 Workshops (Korea, New Zealand and Argentina)
ISBGMO and OECD

• Korea (2006) – Twentieth anniversary of the “Blue Book”
• New Zealand (2008) – Harmonization
• Argentina (2010) – Current work in harmonization

• Goals
 – Share work
 – Provide views of participating countries on projects – why important and usefulness
 – Receive input from audience regarding projects and potential future work
 – Answer questions
III. Facilitating Harmonisation

- Molecular Characterization
- Environmental Considerations for Risk/Safety Assessment for the Release of Transgenic Plants
- Low Level Presence – Seed/commodities
- (Biology of Atlantic salmon)
Molecular Characterization

- One component of ERA and Food Safety Assessment for commercial use
- Understanding of genetic material introduced and expressed
 - Transformation method
 - The inserted DNA, insertion site, and expressed material
 - Inheritance and genetic stability
- Rationales as to why this information may be useful for risk/safety assessment
 - Case by case
Environmental Considerations

• Collective experience gained in 18 years since the Scale-up document for unconfined release of plant products

• 7 considerations under discussion
 – Persistence, weediness & invasiveness
 – Gene flow
 – Organisms and food webs
 – Effects on soil function
 – Crop management practices
 – Effects on plant health, & incidental exposure to animals & humans
 – biodiversity
Environmental Considerations

• Consideration
 – Overview
 – Rationale
 – Information elements of use in evaluation

• Considerations evaluated depend upon case
 – Product attributes
 – Legislative endpoints; Protection goals
 – Hazards identified
OECD
Suite of Documents for ERA

Paradigm
- Blue Book (1986)
 - Organism
 - Step-by-step
 - Case-by-case
- Confined field trials (1992)
- Large scale field trials (1993)
 - Familiarity
 - Plant, trait, environment
 - Environmental issues
- Traditional Crop Breeding Practices-a baseline (1993)

Technical
- Biology documents
- Points to Consider with biology
- Trait documents
- Molecular Characterization
- Environmental Considerations
- ERA and information for LLP in seed & commodities
Thank You