Mineral Biofortification Strategies for Food Staples: The Example of Common Bean

Task Force #12

Journal of Agricultural and Food Chemistry. 2013;61(35):8287-8294

Abstract: Common bean is the most important directly consumed legume, especially in the least developed countries of Africa (e.g., Burundi, Democratic Republic of Congo, Rwanda, and Uganda) and Latin America (e.g., Guatemala, Nicaragua, and El Salvador). Biofortification is the process of improving staple crops for mineral or vitamin content as a way to address malnutrition in developing countries. The main goals of mineralbiofortification have been to increase the concentration of iron or zinc in certain major cereals and legumes. In humans, iron is essential for preventing anemia and for the proper functioning of many metabolic processes, whereas zinc is essential for adequate growth and for resistance to gastroenteric and respiratory infections, especially in children. This paper outlines the advantages and needs of mineral biofortification in commonbean, starting with the steps of breeding for the trait such as germplasm screening, inheritance, physiological, or bioavailability studies and finishing with product development in the form of new biofortified varieties.

To download this article, click here.


  1. Broughton, W. J.; Hernandez, G.; Blair, M. W.; Beebe, S. E.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.) – model food legumes Plant Soil 2003, 252, 55– 128 LINK
  2. Blair, M. W.; Giraldo, M,C.; Buendia, H. F.; Tovar, E.; Duque, M. C.; Beebe, S. E. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.) Theor. Appl. Genet. 2006, 113, 100– 109 LINK
  3. Singh, S. P., Ed. Common Bean Improvement for the Twenty-First Century; Kluwer Academic Publishers: Dordrecht, Germany, 1999.
  4. Blair, M. W.; Gonzales, L. F.; Kimani, P.; Butare, L. Inter-genepool introgression, genetic diversity and nutritional quality of common bean (Phaseolus vulgaris L.) landraces from Central Africa Theor. Appl. Genet. 2010, 121, 237– 248 LINK
  5. Voysest, O.; Valencia, M.; Amezquita, M. Genetic diversity among Latin American Andean and Mesoamerican common bean cultivars Crop Sci. 1994, 34, 1100– 1110 LINK
  6. Schoonhovern, A.; Vosyest, O., Eds. Common Beans: Research for Crop Improvement; CAB International: Wallingford, UK, 1991.
  7. Beebe, S.; Gonzalez, A. V.; Rengifo, J. Research on trace minerals in the common bean Food Nutr. Bull. 2000, 21, 387– 91 LINK
  8. Blair, M. W.; Monserrate, F.; Beebe, S. E.; Restrepo, J.; Ortubé, J. Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red mottled seed class J. Plant Regul. 2010, 4, 1– 5 LINK
  9. Blair, M. W.; Izquierdo, P. Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans Theor. Appl. Genet. 2012, 10.1007/s00122-012-1891-x LINK
  10. Graham, R.; Senadhira, D.; Beebe, S.; Iglesias, C.; Monasterio, I. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches Field Crops Res. 1999, 60, 57– 80 LINK
  11. Welch, R,M; House, W. A.; Beebe, S.; Cheng, Z. Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) J. Agric. Food Chem. 2000, 48, 3576– 3580 LINK
  12. Dwivedi, S. L.; Sahrawat, K. L.; Rai, K. N.; Blair, M. W.; Andersson, M.; Pfieffer, W. Nutritionally enhanced staple food crops Plant Breed. Rev. 2012, 34, 169– 262
  13. Bouis, H. E. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc. Nutr. Soc. 2003, 62, 403– 411 LINK
  14. Bouis, H. E.; Welch, R. M. Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south Crop Sci. 2010, 50, S20– S32 LINK
  15. Pfeiffer, W. H.; McClafferty, B. HarvestPlus: breeding crops for better nutrition Crop Sci. 2007, 47, S88– S105 LINK
  16. Islam, F. M. A.; Basford, K. E.; Jara, C.; Redden, R. J.; Beebe, S. E. Seed compositional and disease resistance differences among gene pools in cultivated common bean Genet. Res. Crop Evol. 2002, 49, 285– 293 LINK
  17. House, W. A.; Welch, R. M.; Beebe, S.; Cheng, Z. Potential for increasing the amounts of bioavailable zinc in dry beans through plant breeding J. Sci. Food Agric. 2002, 82, 1452– 1457 LINK
  18. Moraghan, J. T.; Grafton, K. Seed zinc concentration and the zinc-efficiency trait in navy bean J. Soil Sci. Soc. Am. 1999, 63, 918– 922 LINK
  19. Guzman-Maldonado, S. H.; Acosta-Gallegos, J.; Paredes-Lopez, O. Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L.) J. Sci. Food Agric. 2004, 80, 1874– 1881 LINK
  20. Moraghan, J. T.; Padilla, J.; Etchevers, J. D.; Grafton, K.; Acosta-Gallegos, J. A. Iron accumulation in seed of common bean Plant Soil 2002, 246, 175– 183 LINK
  21. Blair, M. W.; Astudillo, C.; Grusak, M.; Graham, R.; Beebe, S. Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.) Mol. Breed. 2009, 23, 197– 207 LINK
  22. Blair, M. W.; Astudillo, C.; Restrepo, J.; Bravo, L. C.; Villada, D.; Beebe, S. E. Análisis multi-locacional de líneas de fríjol arbustivo con alto contenido de hierro en el departamento de Nariño Fitotec. Colombiana 2005, 5, 20– 27
  23. Astudillo, C.; Blair, M. W. Contenido de hierro y cinc en la semilla y su respuesta al nivel de fertilización con fósforo en 40 variedades de fríjol colombianas Agron. Colombiana 2009, 26, 471– 476
  24. Blair, M. W.; Medina, J. I.; Astudillo, C.; Rengifo, J.; Beebe, S. E.; Machado, G.; Graham, R. QTL for seed iron and zinc concentrations in a recombinant inbred line population of Mesoamerican common beans (Phaseolus vulgaris L.) Theor. Appl. Genet. 2010, 121, 1059– 1071 LINK
  25. Blair, M. W.; Astudillo, C.; Rengifo, J.; Beebe, S. E.; Graham, R. QTL for seed iron and zinc concentrations in a recombinant inbred line population of Andean common beans (Phaseolus vulgaris L.) Theor. Appl. Genet. 2011, 122, 511– 523 LINK
  26. Cichy, K. A.; Caldas, G. V.; Snapp, S. S.; Blair, M. W. QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population Crop Sci. 2009, 49, 1742– 1750 LINK
  27. Guzman-Maldonado, S. H.; Martínez, O.; Acosta-Gallegos, J.; Guevara-Lara, F. J.; Paredes-Lopez, O.Putative quantitative trait loci for physical and chemical components of common bean Crop Sci. 2003, 43, 1029– 1035 LINK
  28. Cichy, K. A.; Forster, S.; Grafton, K. F.; Hosfield, G. L.Inheritance of seed zinc accumulation in navy bean Crop Sci. 2005, 45, 864– 870 LINK
  29. Gelin, J. R.; Forster, S.; Grafton, K. F.; McClean, P.; Rojas-Cifuentes, G. A. Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.) Crop Sci. 2007, 47, 1361– 1366 LINK
  30. Singh, S. P.; Westermann, D. T.A single dominant gene controlling resistance to soil zinc deficiency in common bean Crop Sci. 2002, 42, 1071– 1074 LINK
  31. Blair, M. W.; Knewtson, S. J. B.; Astudillo, C.; Li, C. M.; Fernandez, A. C.; Grusak, M.A. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL BMC Plant Biol. 2010, 10, 215 LINK
  32. Glahn, R. P.; Lee, O. A.; Yeung, A.; Goldman, M. I.; Miller, D. D. Caco-2 cell ferritin formation predicts non-radiolabeled food iron availability in an in vitro digestion/Caco-2 culture model J. Nutr. 1998, 128, 1555– 1561 LINK
  33. Glahn, R. P.; Wein, E. M.; Van Campen, D. R.; Miller, D. D. Caco-2 cell iron uptake from meat and linkin digests parallels in vivo studies: Use of a novel in vitro method for rapid estimation of iron bioavailability J. Nutr. 1996, 126, 332– 339 LINK
  34. Tako, E.; Blair, M. W.; Glahn, R. P. Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model Nutr. J. 2011, 10, 113 LINK
  35. Ariza-Nieto, M.; Blair, M. W.; Welch, R. M.; Glahn, R. P. Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model J. Agric. Food Chem. 2007, 55, 7950– 7956 LINK
  36. Pachón, H.; Ortiz, D. A.; Araujo, C.; Blair, M. W.; Restrepo, J. Iron, zinc and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans J. Food Sci. 2009, 74, H147– H154 LINK
  37. Díaz, A. M.; Caldas, G. V.; Blair, M. W. Concentrations of condensed tannins and anthocyanins in common bean seed coats Food Res. Int. 2010, 43, 595– 601 LINK
  38. Cvitanich, C.; Przybylowicz, W. J.; Urbanski, D. F.; Jurkiewicz, A. M.; Mesjasz-Przybylowicz, J.; Blair, M. W.; Astudillo, C.; Jensen, E. O.; Stougaard, J. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds BMC Plant Biol. 2010, 10, 26 LINK
  39. Cvitanich, C.; Przybyłowicz, W. J.; Przybyłowicz, J. M.; Blair, M. W.; Jensen, E.; Stougaard, J. Micro-PIXE investigation of bean seeds to assist micronutrient biofortification Methods Phys. Res. 2011, 269, 2297– 2302 LINK
  40. Blair, M. W.; Sandoval, T. A.; Caldas, G. V.; Beebe, S. E.; Páez, M. I. Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean (Phaseolus vulgaris L.) Crop Sci. 2009, 49, 237– 246 LINK
  41. Blair, M. W.; Herrera, A. L.; Sandoval, T. A.; Caldas, G. V.; Fileppi, M.; Sparvoli, F. Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes for the phytic acid pathway Mol. Breed. 2012, 30, 1265– 1277 LINK